For Machinery Makers, Green Tech creates Green Business

Today’s issue of the Newsletter of TextileFuture is presenting you today a joint survey between BCG, the Boston Consulting Group and the German VDMA, Germany’s Machinery Association, titled “For Machinery Makers, Green Tech creates Green Business. We feel sure that the conclusion drawn will be of utmost interest to you.

Here starts the feature:

Green Tech creates Green Business

With around 3300 members, VDMA is the largest network organisation for mechanical  engineering in Europe. The association represents the common economic, technological and scientific interests of this diverse industry. VDMA was founded in November 1892 and is the most important voice for the mechanical engineering industry today. It represents the issues of the mechanical and plant engineering sector in Germany and Europe. It successfully accompanies its members in global markets. Its technical expertise, industry knowledge and straightforward positioning make it a recognized and valued point of contact for companies as well as the general public, science, administration and policy makers.

BCG in cooperation with VDMA

By guest authors Markus Lorenz, Martin Lüers, Max BCG in cooperation with VDMALudwig, Simon Rees, Hartmut Rauen, Matthias Zelinger, and Robert Stiller. The authors would also like to acknowledge the contributions of Cornelius Pieper, Jens Burchardt, Joschka Zimmermann, Janosch Baer, and Edward Baker to the research and writing of this report.

About the Authors

Markus Lorenz is a managing director and senior partner in the Munich office of Boston Consult-  ing Group. You may contact him by email at

Martin Lüers is a principal in BCG’s Munich office. You may contact him by email at lueers.mar-

Max Ludwig is a principal in the firm’s Munich office. You may contact him by email at ludwig.

Simon Rees is a managing director and partner in BCG’s Chicago office. You may contact him by email at

Hartmut Rauen is the deputy executive director of VDMA. He is responsible for the association’s efforts in technology, standards, research, education and innovation. He also serves as chairperson of the board of directors of the Research Association for Mechanical Engineering (FKM).

Matthias Zelinger is a managing director of VDMA Power Systems and the association’s spokes- man on climate and energy policy. He also leads the activities of the VDMA’s Climate and Energy Forum.

Robert Stiller  is an advisor to VDMA and its Climate and Energy Forum. He represents the forum  to policymakers and the public.


This report was written in conjunction with the Verband Deutscher Maschinen und Anlagenbau (VDMA), Germany’s mechanical engineering industry association. The authors would like to thank the many member companies of the VDMA that contributed their expertise and suggestions.

At a glance

Machinery and equipment manufacturers have an essential role to play over the  next decade in reducing the greenhouse gas (GHG) emissions that are causing global warming. Their products and services will provide the gains in efficiency and the technological innovations needed to substantially reduce their customers’ carbon footprints.

Opportunity Knocks

In this study, we analyze the total GHGs emitted by 14 different industries served by machinery makers, the potential they have to reduce those emissions, and the specific technology levers they can pull on this journey. Providing the right equipment offers a revenue opportunity of EUR 10 trillion through 2050.

Getting Started

Manufacturers looking to capture value should evaluate their product and service portfolios in light of available opportunities and jumpstart the R&D capabilities needed to develop and market future technologies.

The next decade will be critical in the worldwide effort to combat climate change. Unless we can substantially reduce greenhouse gas (GHG) emissions by 2030, we have little chance of limiting the increase in average global temperatures to 2°C or less by 2050, a key tenet of the 2016 Paris Agreement. If we do not meet these goals, the consequences for the world’s economies will be severe.

Right now, we have the technical means to reduce a major portion of the estimated  51 gigatons (Gt) of GHG emissions released into the atmosphere each year, and ma- chinery and equipment manufacturers have a key role to play in the effort. Already, they supply the renewable-power generation equipment, optimized heating and cooling systems, highly efficient motors, and other technologies needed to reduce a substantial portion of our GHG emissions. Gaining the full benefits of this equipment will require a considerable investment from clients—around EUR 10 trillion through 2050. That is about a third of EUR 1 trillion per year—but still a mere drop in   the bucket compared with the annual global GDP of EUR 76 trillion.

Developing and deploying those technologies that are technically possible but still too costly to use at scale (such as greener fuels and carbon capture), will be a far more difficult task. But machinery and equipment providers willing to take on the challenge stand to gain a significant competitive advantage over slower, less progressive rivals.

In this report, we examine the role of machinery manufacturers in providing the equipment and expertise needed to meet our  GHG  reduction  goals. By  analysing the relative amount of GHG emissions produced by each of the industrial sectors that purchase and use these manufacturers’ products, and the specific technological levers the manufacturers themselves can pull to contribute to the effort, we can  gauge the broader impact these actions have in reducing our global total. It is up to the machinery suppliers to develop the green technologies needed in the fight against climate change. For them, the potential upside is massive.

Accounting for Global GHG Emissions

According to the United Nations, global GHG emissions came to 51 Gt of CO2-e in 2017, of which the 36 countries we analyzed emitted 35 Gt (the “total” referred to throughout this report).1 The biggest contributors were China and the US, with 13 Gt and 6 Gt, respectively.

Our analysis shows that 37 %, or 13 Gt, of the 35 Gt total can be reduced by existing technologies that are economically feasible today. Another 49 %, or 17 Gt, can be mitigated with technologies that are feasible but not yet economically viable, including green fuels and carbon capture techniques. This brings the reduction poten- tial to 86 % of the total.

It is up to the machinery suppliers to develop the green technologies needed in the fight against climate change.

Every industry sector emits two kinds of emissions:

•             Scope 1 includes all the emissions produced by companies in the course of their operations. These can be broken down further into “process” and “energy” emissions, the former of which include all GHGs emitted as part of company activities, such as the CO2 produced in the processing of iron to make steel and  the methane produced by cows in agricultural production. Scope 1 process emissions account for 29 %, or 10 Gt, of total emissions. Energy emissions include the emissions companies produce to generate the heat, electricity, steam, and other power sources they use in their production activities. These account for   44 % of the global total, or 15.2 Gt. Note that virtually all the emissions produced by transportation, including cars, trucks, planes, trains, and ships, fall into this category.

•             Scope 2 includes all emissions produced by energy-generating companies that are then bought and used by companies in other sectors. Power generation accounts for 27 % of total emissions, or 9.5 Gt.

Companies from almost every industry have a variety of existing technological levers they can use to reduce their carbon footprint.

Globally, manufacturing produces 48 % of total emissions: 6 Gt of Scope 1 process emissions, 5.7 Gt of Scope 1 energy emissions, and 5 Gt of Scope 2 emissions. Among manufacturing subsectors, iron-and-steel producers are the largest contributor, at 3.9 Gt. Minerals companies follow with 3.3 Gt (mostly in the production of cement, but also in making ceramics and glass). Chemicals companies come third, at 2.6 Gt.

Nonmanufacturing sectors produce the remaining 52 % of the total. Aside from the power generation sector, residential and commercial buildings produce  the  most (6.7 Gt), followed by transportation (5.7 Gt) and agriculture (3.5 Gt). (See Exhibit 1)

The power generation industry is a special case. It alone produces 10.4 Gt of GHG emissions, or 30 % of the total. The industry creates just 0.9 Gt of Scope 1 emissions to maintain operations, but it creates 9.5 Gt of emissions in the course of producing the power it sells. We attribute those emissions to the customers to which the industry sells its power; the GHG emissions these customers produce is therefore  equal to all the Scope 2 emissions created during the consumption of energy by all the other sectors combined.

Gaining Leverage

Companies from almost every industry have a variety of existing technological levers they can use to reduce their carbon footprint, from electric vehicle usage to  green fuels (such as hydrogen), of which some are not yet fully developed for most industries. In order to determine which of these levers will produce the greatest impact on the GHG emissions attributable to each sector, and how machinery manufacturers can contribute to the effort to lower those emissions, we analysed the technical feasibility of all existing carbon-reducing technologies. We did not account for how widely available the technology is at present, how quickly it could be in- stalled at scale, or the willingness of companies to deploy it given their installed base of current technologies.

Each technology’s economic viability depends on whether it has developed to the point where companies would be willing to implement it today, or if it is still too costly to deploy at scale.

The emissions-reducing technology levers can be grouped into five categories, with placement depending on the nature of the levers, as well as their technical and eco- nomic feasibility. (Exhibit 2) Efforts to carry out the first two categories have already begun—although much work remains  to  capture  their full potential. For the most part, the others will have to wait until their implementation becomes both technically possible and economically practical on a broad scale. Still, regardless of their technological maturity, efforts to develop and perfect them can and should be- gin immediately. There is no reason that our five categories should follow a strict sequential order. Exhibit 3 summarizes the technological options available to each industry in reducing its carbon emissions along these categories.

•             Category 1 levers include only those technologies that can enable the power generation industry to reduce its own emissions. This category is critical if we  are to reach our climate goals, since the power industry emits an enormous portion of total GHGs, at 10 Gt annually. The lever in this category with the greatest potential for GHG reduction is renewable power generation, which could, in theory, entirely decarbonize the power generation industry. Given the practical limits of its use, however, it is estimated that renewables could replace  5 Gt of GHGs each year.2

•             Category 2 levers include the economically viable technologies that could  be used currently to reduce emissions in all manufacturing and nonmanufacturing sectors. The primary levers in this category, available to almost every industry, are heat-optimisation-and-recovery technologies (which could reduce 1.8 Gt of GHGs) as well as increased electrical and mechanical efficiency (0.8 Gt). Other, sector-specific emission reduction levers also have a role to play.3

•             Category 3 levers cover those technologies that, while  currently  available  in some form or another, are not yet viable due to cost or because they cannot yet be scaled to the point where they would make a significant difference. These include methane capture in agriculture and switching entirely to electric vehicles in the mining and minerals sector.

•             Category 4 and Category 5 levers include green fuels, such as hydrogen and biofuels, and carbon capture, utilisation and storage (CCUS) technology, that all have the potential to be real game changers in emissions reduction efforts, although many are not yet technologically or economically practical. When applied to the Scope 1 emissions that remain after pulling the category 2 and category 3 levers in every sector, green fuels could potentially reduce emissions by a total of 4.9 Gt annually, and CCUS technology by a total of 7.3 Gt.

The Opportunity for Machinery Makers

Each of the five categories offers a wide range of actions that companies in industri-  al sectors can take to participate in the global effort to reduce GHG emissions. For us to achieve the goals of the Paris Agreement, companies from every industry will have to use the full range of technologies at their disposal.

The EU, for example, recently announced a plan to renew and reinforce its efforts to become entirely carbon neutral by 2050. Called the Green Deal, it gathers together a variety of sustainability goals—including zero pollution, a circular economy, a just and inclusive energy transition, and others. Key to the effort is posi- tioning the EU for technological leadership to reduce carbon emissions as a trigger for sustained economic growth. The plan is estimated to require approxi- mately EUR 300 billion in additional investments annually over the next decade for the infrastructure needed to meet these goals—a significant further opportunity for machinery makers.

Governments should also support the long-term goal of ensuring predictable price differences between fossil-fuel-based and climate-friendly energy   generation, as well as foster a supportive environment for investment in the technology needed for hydrogen- fueled transport and electricity transmission and distribution.

This is unlikely to happen immediately. However, by pulling the currently more fea- sible levers in the first two categories alone, we can reduce total emissions by 37 %.  We estimate that pulling all the levers in categories 1 and 2 will require total capital expenditures of EUR 4.5 trillion into machinery and equipment over the next decade. (This estimate does not take into consideration the cost required to operate the equipment once it is installed.)

The next three categories will only grow in importance, feasibility, and productive value in subsequent years, and they will require investments of an additional EUR 5.9 trillion in new machinery and equipment through 2050. This brings the total invest- ment needed to complete all five categories to EUR 10 trillion. Exhibit 4 breaks this  down into the overall investment potential for each technology category.

A category-specific analysis reveals the levers that can be pulled in each category for every industry covered, the specific role of machinery makers and related tech- nology providers in helping clients and potential clients pull them, and the potential size of the investments needed to deploy these technologies.

Category 1: Power Generation Levers

The sole goal of category 1 is to reduce the GHG emissions released by the global power industry in the course of generating electricity. If all the levers in this category alone were to be pulled, the industry’s emissions would decline by 6.5 Gt, a reduction of almost 20 % of our global total.

By far, the most important action involves shifting to renewable sources of power generation—primarily solar and wind power—which would reduce emissions by 5 Gt if 49 % of energy production were converted to these sources. Renewable power generation has already proven to be technically feasible at scale, and, it is already  cost competitive with fossil-fuel-based methods, so expanding the use of renewable sources would be economically viable.4

Still, if we are to reach the goal of reducing emissions from power generation by 5 Gt, the worldwide use of solar photovoltaic power systems will have to increase by 800 % over the next ten years, while the use of wind generation must increase by 400 %. The effort to increase the use of these power sources will require significant investments in machinery and equipment—an estimated EUR 2.3 trillion through 2030.

The largest share of this investment potential, approximately EUR 1.1 trillion, will go to solar energy, the cost of which is also expected to decline the most. Wind energy will likely capture the second-most investment (EUR 820 billion), followed by hydro- electric energy (€360 billion). How much of this potential revenue will be unlocked depends on multiple factors, including the regulatory conditions  regarding  the share of renewables in the power mix and public acceptance of wind farms and hydroelectric dams.

Equipment suppliers have a major role to play in the development and deployment   of these systems—and a major opportunity to increase revenues. Moreover, technologies for boosting the flexibility of the power grid and improving storage capacity  (not included in this analysis) will lead to further revenue opportunities.

In addition to renewable power sources, the power generation industry has several other levers it can pull. Increasing efficiency at its plants, upgrading to highly efficient, modern combined-cycle gas power plants, and the use of biofuels under certain circumstances would together reduce another 1.4 Gt of carbon emissions. Here, the opportunity for technology providers lies in carrying out upgrades of gas and biofuel plants and supplying high-efficiency motors.

Decarbonising the power sector is especially critical because global demand for energy is expected to keep growing for the foreseeable future. The production of synthetic fuels (synfuels) such as hydrogen, while not  yet  economically  viable, will place an enormous burden on the electrical grid. For example, increasing the share  of synfuels in road transportation in Germany to 25 % would result in an estimated 70 % increase in demand for electricity nationally. And converting hydrogen to a useable fuel requires electrolysis, a further drain on the grid.

Category 2: Technically Feasible, Economically Viable Levers

This category covers all the levers that could be deployed today across industries, offering machinery makers a wide range of opportunities for providing customers with the means to reduce their carbon emissions. For these companies, the revenue potential is a considerable EUR 2.2 trillion opportunity. A good portion of this investment potential is likely to become a reality due to the associated cost savings to be gained by implementing these technologies. If fully deployed, they have the potential to reduce emissions by 13 Gt annually. The following options are most feasible.

Heat Optimisation and Recovery. Widespread implementation could reduce GHG emissions by 1.8 Gt and offer revenue opportunities of EUR 580 billion for machinery makers. These technologies can be deployed in every manufacturing industry, especially in applications where the recovery of waste heat has so far been neglected. And because they lead directly to cost savings in energy consumption, their return on investment for manufacturers is immediate. As a result, they will likely be among the very first levers to be pulled by companies committed to low-carbon production methods.

Investments in heat exchangers, the core technology for recovering heat, will likely constitute the largest share of these investments. Other technologies include high-efficiency burners that preheat the air and fuel to enable them to operate  more effectively, systems that send waste heat from exhaust gases to nearby consumers of heat, and heat pumps that raise the temperature of waste heat to levels needed in other production processes. In addition, effective heat storage technolo- gies can store waste heat and send it to consumers when needed.

Considerable growth opportunities exist in the further development and produc- tion of heat optimisation and recovery capabilities. According to one machinery manufacturer that caters to the beverage production industry, the use of waste heat and heat storage systems can save up to 60% of the thermal energy required by breweries.

Building Automation. Building management systems that control heating, cooling, ventilation, and shading and lighting (both automatically and on demand) have the potential to lower carbon emissions by 1.64 Gt. Regulating a building’s tempera-  ture, air quality, and lighting depending on when it is occupied can reduce energy costs by up to 40 %, especially in commercial buildings, whose occupants are typically less inclined to try to save energy when someone else is paying for it.

Taken together, these various technologies offer machinery companies a revenue opportunity of about EUR 1.1 trillion. The most important include efficient HVAC sys- tems, automation systems (from simple, standalone thermostats and timed switches to the most advanced automation equipment), building management systems that bring together a range of building maintenance functions, and systems that manage and monitor energy performance.

Building-automation technologies will likely be implemented quickly in the coming years, given their immediate effect on energy costs. Technology providers can par- ticipate in the transition in several ways. Measuring and networking equipment will be needed to monitor conditions inside buildings. Automation equipment such as actuators for controlling windows, blinds, and HVAC systems will be needed to opti- mize heat and energy use and storage. The deployment of heat pumps and peak load heaters will also increase significantly. Finally, there is all the equipment required to produce advanced insulation materials in addition to double- and triple-pane glass windows. However, the effectiveness of these technologies varies considerably depending on the building’s local climate conditions.

Process and Equipment Optimization. All manufacturers can benefit from the devices needed to boost the electrical and mechanical efficiency of their production equip- ment, which in total can reduce GHG emissions by 0.8 Gt. To reach that goal, these technologies, the majority of which have already proven effective, must be fully rolled out across industries. The potential decline in emissions will come through significant reductions in energy consumption, and the resulting savings will likely make them especially attractive to manufacturers. Pursuing cross-technical technologies can support this effort.

The use of highly efficient motors that produce the same mechanical power while con- suming less electrical energy, as well as efficient distribution transformers, can achieve real energy savings. Moreover, most electric motors in industrial applications, such as pumps, compressors, and fans, run constantly at full speed. This is highly inefficient in most applications since the demand placed on these motors varies considerably and is usually much lower. Electrical motors with variable-speed drives and intelligent controls that detect demand and operate accordingly can reduce electricity consumption by up to 40 %, resulting in extended lifetimes and decreased noise.

But even the most efficient motors can’t reach their full potential if their design  isn’t suited to their application. Greater cost savings can be achieved when the designs of pumps, compressors, fans, and other motors precisely match their respec- tive applications. Machinery makers therefore have a big opening to manufacture all connected mechanical equipment with the same degree of efficiency.

Meeting the goal of reducing emissions by the full 0.8 Gt will require an estimated EUR 230 billion in investment, with most of the opportunity for the machinery industry coming through the supply of variable-speed drives.

Recycling. Increasing the recycling and reuse of all kinds of materials offers many benefits, the most important of which is reduced need for sourcing and raw materi- als usage. But the so-called “circular economy” can also help reduce GHG emis- sions, primarily because producing goods with recycled materials is far less energy- and process-intensive than using virgin materials. There’s no need to mine, smelt, and ship iron ore for steel if it can be produced from scrap.

Our analysis of the reduction in GHGs to be gained through recycling focuses on the iron and steel, aluminum, and pulp and paper industries, and on the produc-  tion of plastics in the chemicals industry. Pulling category 2 levers across these industries would lead to a decline in emissions of 0.5 Gt. Furthermore, recycling plastics has the added benefit of reducing the pollution created by its improper dis- posal.

The quality of recycled end products depends greatly on the homogeneity and cleanliness of the recycled materials, especially for plastics. It is critical, therefore, that the materials to be recycled are carefully sorted and separated into what’s useable and what isn’t. The machines needed for these operations are largely available, and demand is increasing.

Recycling is already economically viable in the iron and steel, aluminum, and paper industries, but recycling many types of plastics is not yet economically competitive and needs to be subsidized. Technology providers should nevertheless consider fur- ther developing the equipment needed to improve its viability to take part in an at- tractive growth market.

Heat Pumps. Current state-of-the-art heat pumps use three units of heat from the surrounding ground heat or air, and one unit of electricity, to produce four units of heat. That is far less energy than the typical gas boiler, which requires four units of energy from natural gas to produce the same amount of heat. Yet most of the heat generated for homes and other buildings today comes from the energy produced by burning fossil fuels, such as natural gas.

A heat pump’s efficiency depends on two factors: the temperature of the surround- ing input heat and how the heat produced is distributed. Heat pumps are already economically viable in new buildings, but less so for buildings that need retrofitted,  as the new ground-based heat sources and low-temperature space heating systems typically needed can be expensive. Still, technology providers can benefit in either scenario. Switching to heat pumps, together with the decarbonization of the power generation sector that supplies their electricity, can reduce emissions by 0.5 Gt. Sup- plying the need would provide EUR 290 billion in revenue for the machinery industry.

Flare Gas. Approximately 150 billion cubic meters of petroleum gas are vented or burned off as flare gas in the course of oil and gas exploration and extraction, according to World Bank estimates. Unburned gas is mostly methane, a particularly potent GHG, while flare gas releases CO2 when burned. Switching to flare gas on a global scale would cut emissions from the oil and gas industry by 0.3 Gt.

In addition to lowering their GHG emissions, oil and gas companies can profit from the capture of flare gas, which can be reused on site or sold as fuel or feedstock for chemicals without the need for expensive refinery equipment.

The additional profits should provide an incentive for these companies to install equipment for capturing, processing, and transporting flare gas—and an incentive for technology providers to supply the equipment.

Leak Detection and Repair. Gaseous hydrocarbons also leak out in the course of petroleum and gas production. Reducing these emissions by 40 % would save 0.15 Gt of GHGs. But detecting leaks requires special equipment, such as satellites and infrared cameras, and while the equipment needed to repair leaks is inexpensive, the labor costs can be high. Manufacturers looking for opportunities in this area should also consider offering their own monitoring and repair services.

Energy Management Systems (EMSs). The ability to monitor and benchmark energy consumption can enable companies in every manufacturing sector to  identify significant potential reductions. EMSs allow them to compare their own experience with best-practice KPIs and to monitor usage trends. Thanks to the associated cost savings, EMSs are already economically viable and can save up to 10% of a company’s total consumption; on a global basis, they could reduce total emissions by 0.09 Gt (the figure does not include emissions reductions achieved through efficient equipment and intelligent operations, which are accounted for in other levers).

Here, equipment manufacturers can benefit in several ways: by developing and sell- ing the technology itself; by providing the technologies for further reducing emis- sions revealed by EMSs; and by leveraging their benchmarking and experience with other customers to sell additional EMS services and audits.

Efficient Fertilizer Management. Farmers worldwide release a considerable  amount of GHGs (mostly nitrous oxide) into the atmosphere when using natural fertilizers, such as liquid manure. Managing their application could lead to a 0.08 Gt emissions reduction annually. Proper management can minimize the  contamination  of  soil and water through excessive fertilizer use and save money in the process.

Many of these techniques are  already  economically  viable. Technology  providers can supply the measurement tools needed for determining the content of natural fertilizer and the nutrient concentration in the soil in their fields, as well as in the water they use to irrigate their crops. Precision agriculture technologies can be used to adapt the rate of fertilizer application to each field’s specific requirements, low- ering the amount of fertilizer, capturing additional savings, and reducing GHG emis- sions even further.

Category 3: Technically Feasible, But Not Yet Viable Levers

This category covers all the levers that are not ready to be deployed today, either because they cannot yet be scaled up, or because they still cost too much. Capturing the full potential of these levers will depend on when they  are  ready  for  wide- spread use, which for most is unlikely without considerable government-backed fi- nancial and regulatory support. If fully deployed across all sectors, however, they could lower GHG emissions by 17 Gt.

Companies conducting the research needed for scaling can benefit further by spreading their R&D costs across several sector opportunities and as a result get more bang for their buck. The following levers should be considered.

Electrification of Vehicles. The emissions-lowering effect of substituting fossil fuels with electricity to power the world’s vehicles depends on the degree of the technol- ogy’s penetration; the total electrification of our  global  road  transport  system would reduce 2.4 Gt of GHGs annually. Achieving this, however, also depends directly on the complete application of category 1 reductions in the carbon intensity of the power generation industry.

This lever is already available and economically productive in sectors where light-duty vehicles travel short distances—in local package delivery, for example. If electric vehicles are to reach their full emissions reduction potential, however, the charging infrastructure and battery production capacity will also need to be fully deployed. This is economically viable, in theory, but getting there will take consider- able political support.

Still, converting existing auto plants to battery electric vehicle (BEV) production offers a market potential of around EUR 1 trillion, assuming that BEVs will ultimately replace all other cars. There is also considerable potential in supplying components  for BEVs, including batteries, electric motors, and electronics.

Optimisation of Internal Combustion Engines. A 30 % increase  in  the  efficiency  of the internal combustion engines that propel road vehicles can potentially reduce  GHG emissions by 1.2 Gt. These gains can be made by increasing the efficiency of   the engines themselves, as well as by advances in the equipment needed to produce lighter-weight vehicles and technologies for recouping waste energy, such as so- called “hybrid motors” equipped with regenerative braking.

The costs associated with the R&D needed to design and deploy these technologies,  in addition to the costs of replacing all the internal combustion engines currently     on the road, are considerable. Pulling this lever completely will require a significant financial investment as well as political and regulatory support—much like the gov- ernment-mandated retrofitting of catalytic converters in the 1990s.

Reusing Waste Methane. As organic waste decomposes, it releases methane gas that can be captured to produce biomethane fuels that can, in turn, be used in numerous applications, including power generation, transportation, and heat production. Taking these steps on a global scale has the potential to reduce GHG emissions by 0.67 Gt.

Recycling waste methane is not yet economically viable, and it will likely take sub- stantial subsidies and carbon-pricing regulations to increase its use. As the technol- ogy becomes more common, however, the tech providers will be instrumental in supplying the necessary equipment for the leak-proof facilities needed to store methane, as well as the anaerobic digesters and gasification and treatment plants  for converting it to other uses. We estimate the market potential for these invest- ments at EUR 280 billion.

Coal Mine Methane Capture. The process of coal mining releases methane trapped inside the coal. In addition to the risk that it can explode, endangering miners, the methane released is a particularly potent GHG, and capturing it could reduce an equivalent of 0.3 Gt of emissions. The market potential for providing the technology for capturing this methane, pumping it to storage facilities and reusing it as fuel for heating or electricity generation, is around EUR 20 billion.

Manure Methane Capture. Around 7 % of GHG emissions released by the global agriculture sector come from the release of methane in the course of manure fermentation at manure management facilities. Capturing these emissions and reusing them to generate power and heat could reduce the industry’s emissions by 0.21 Gt. But capturing the methane and converting it to fuel at biorefineries is too expensive to make it economically viable at present. Technology providers should see this as an opportunity to develop and sell the equipment that would make it possible, within a potential EUR 85 billion market.

Once this technology does become feasible, technology providers should also con- sider developing equipment for collecting manure in the field as an additional feed- stock for biorefineries.

Clinker Substitution. The clinker produced during the production of cement used to make various cement products requires a tremendous amount of heat and creates    an outsized proportion of all the GHGs emitted globally—fully 2.3 Gt every year.

Avoiding its use by substituting other materials, such as steel slag, fly ash, or granu- lated blast furnace slag, can save 80% of that total.

The technology for clinker substitution is already being used, but its deployment is constrained by the lack of enough substitute materials. In addition, safety regula- tions in some jurisdictions are preventing the rollout of new clinker substitutes. But even partial substitution of clinker can reduce GHG emissions significantly. And as the process gains traction, companies can benefit from sales of current and future clinker substitution systems.

Methane Pills. Cows and other ruminants produce 0.4 Gt of total GHG emissions through the methane they emit. While it is by no means technically feasible yet, a methane pill is being tested in clinical studies that prevents the formation of methane during digestion.

However, it is unlikely that methane pills will ever be economically viable on their own, since there is no revenue or cost savings to be gained by giving them to live- stock. Their use would therefore need to be subsidized or supported through CO₂-pricing schemes. The opportunity for technology providers lies in developing and selling the equipment for producing the pills.

Rice Management. Rice is usually grown by flooding fields during the early season  to limit the growth of weeds and pests, but the microbes that decay the organic matter left behind produce methane. As a result, the cultivation of rice accounts for 10 %, or 0.3 Gt, of the total emissions produced by the agriculture sector.

Proper rice management can reduce those emissions by 90 % through early- and mid-season drainage. Extensive work has been done to produce hybrids that require less water and increase productivity, but their value in large-scale applications has  yet to be proven. Moreover, the opportunity for technology providers is low, since most of the world’s rice is grown in emerging markets such as Asia and Africa, where the money needed for further research is limited.

Category 4: Green Fuels

This category covers the technologies involved in the substitution of fossil fuels with green fuels made from hydrogen, biomass, and so-called “power-to-X” (P2X) fuels de- rived from the conversion of electricity. To help these alternatives reach their full de- carbonization potential, the energy needed to produce green  hydrogen  and  P2X fuels must come entirely from renewable sources. Therefore, both renewable power generation and the infrastructure required to produce and distribute green fuels   must be in place before this lever becomes economically viable at scale. Once these initial hurdles are overcome, the benefits will span multiple industries and applications. These fuels could potentially reduce global GHG emissions by 4.9 Gt.

Technology providers can benefit by supplying what is needed to produce green fu- els in multiple industries. We expect this market to total EUR 2.1 trillion in potential revenue over the next decade. Opportunities include the construction of electrolysis plants to produce green hydrogen for use as feedstock in the chemical industry,  which alone will be worth EUR 410 billion in revenue.

They can also supply the technology and equipment needed to enable the substitu- tion of fossil fuels for green alternatives in several industries. Building synfuel pro- duction capacity for the aviation and shipping industries alone—where electrification is not likely to be an option—will require a EUR 1.1 trillion investment.

Other opportunities include using hydrogen for fuel cells in transportation and in other sectors, and as a reduction agent in the iron and steel industry. Hydrogen and synfuels can also replace carbon-based fuels for burner use in high-temperature applications. The market potential for providing the production capacity needed to re- place natural gas with biogas or biomethane throughout all industrial sectors totals around €600 billion.

Category 5: Carbon Capture, Utilization and Storage (CCUS)

This category is dedicated to the use of CCUS technologies that capture, use, and store GHGs emitted during power generation and other industrial processes where the fossil fuels used cannot be economically replaced with green fuels, or in natural gas extraction. The technology has the potential to lower total emissions by 7.3 Gt, and extensive research is being conducted into the potential for converting captured carbon into synfuels. Alternatively, the carbon can be kept in long-term stor- age locations underground, or even in the ocean. But at scale, such possibilities will need to overcome both economic factors and safety concerns.

Still, there is growing interest in the technology. As of 2018, there were 43 commer- cial large-scale global CCUS facilities: 18 of them in operation, 5 under construction, and 20 in various stages of development. Most of these operations are being de- ployed at locations where large amounts of CO2 are emitted within a confined area, such as near power plants and other direct GHG emitters.

Until technologies can be developed to derive more profit from the carbon CCUS facilities capture—or GHG emissions prices rise high enough to offset the cost— CCUS will remain a pure cost added to legacy infrastructure, and one that requires government incentives to make it economically viable. Furthermore, these facilities do not require much new machinery for their operation. Instead, their value lies in preserving the life cycle of the existing emissions-intensive machinery used in the processes of the operations where they are co-located, including the blast furnaces used in iron and steel production and the equipment used in coal-fired power plants—already a steeply declining market.

The economic viability of CCUS depends largely on the availability of storage facilities, on the cost to transport it, and on the purity of the gas being captured; the pur- er it is, the less costly it becomes to process it for other uses. Its viability therefore varies from industry to industry. Its viability for the chemicals industry (especially  for the production of ammonium and petrochemicals) and natural gas extraction is rated as medium. But its viability is low in power generation and aluminum, ce- ment, or iron and steel production. Thus, deployment of these facilities and the technology needed will depend on the economic viability of CCUS in each industry; still, the potential market revenue is estimated at €2.4 billion.

Next Steps

Machinery and equipment manufacturers are playing a large role in supplying the equipment and services needed to meet our GHG reduction goals globally. Already, they are helping cut back on the 13 Gt of GHG emissions that can be reduced by de- ploying technologies that are economically viable and available now.

Looking forward, however, we must reduce emissions by another 17 Gt if we are to stem the impact of global warming. This will be a much more difficult task, and one that is largely up to those same companies to develop and produce the technologies needed to get us there. They must look far ahead, anticipating the requirements of  the industry sectors they serve as the need to reduce carbon emissions becoming  even more pressing; thankfully, the potential for growth is significant.

To prepare themselves for ultimately capturing these growth opportunities, all ma- chinery makers should take the following three steps:

•             Reduce your own carbon intensity. Show your customers  that  you  understand  the urgency of decarbonization. Leading by example will also give you a com- petitive edge over your less committed rivals. This will involve understanding  and maintaining evolving carbon reduction standards within your own industry. Become the first company in your industry to achieve true low-carbon produc- tion, which will be especially important as your customers grow increasingly conscious of the importance of reducing their own carbon footprints.

•             Evaluate your product and service  portfolio.  Account  for  different  climate change scenarios and the opportunities they offer and the risks they present.   This will enable you to identify new green tech opportunities in previously untapped industries and applications—and to move quickly into new markets when the opportunity arises. It will also prepare you better to take advantage of the rise of truly disruptive new green technologies. The  surprising  speed  at which LED lighting replaced incandescent bulbs, for example, has resulted in the rapid loss of competitive advantage for many top companies.

•             Immediately develop the ideas that will lead to the products and services capable of mitigating your clients’ GHG emissions. Carry out R&D-based lighthouse projects to determine the technical and economic feasibility of these concepts, and start to upgrade your portfolio, either organically or through strategic acquisitions.

Train your service professionals to look for potential efficiency gains to be made  at the factories and facilities they visit, ensuring that they report back regularly with new ideas and potential opportunities. Consider also training service pro- fessionals to provide energy-efficiency consulting services to clients on site. Fi- nally, showcase to potential clients the gains in decarbonization, as well as in ef- ficiency and cost savings, you’ve helped existing customers achieve.

Mitigating the effects of climate change is everyone’s job, and companies every-  where can help by reducing the GHG emissions they are responsible for. Machinery manufacturers have an especially large role to play in the effort. By improving the efficiency of the equipment they supply, these manufacturers can reduce 13 Gt, or 37 %, of global emissions—and they can do so today. By perfecting existing technolo- gies and developing new ones, they can help reduce another 17 Gt, or 49 %, of the world’s total. Aside from the importance of reducing these emissions and fighting climate change, this effort will  open valuable  opportunities for  machinery  makers to capture new sources of growth—a market worth approximately EUR 10 trillion.

Even given the considerable economic incentives, however, machinery manufactur- ers can’t do it alone. Their industrial customers must be willing to make the invest- ments in new technologies. Governments, too, must be ready to support, and some- times subsidize, the effort. But the path to success is clear, and the time to start on the journey is now.


1.                GHG emissions are stated in terms of CO2 equivalents (CO2-e), a method for consistently defining the global warming potential of all GHGs. Methane, for example, has a global warming potential 28

times greater than CO2. For the purposes of this study, we include emissions data from 34 of the member countries of the Organization for Economic Cooperation and Development (excluding South Korea and Mexico) and the four BRIC countries (Brazil, Russia, India, and China). Detailed data on the emissions attributable to other countries is not available. Calculations do not include emissions from land use, land use change, or forestry.

2.                We use the International Energy Agency’s (IEA) Sustainable Development Scenario as the basis for the worldwide energy mix and carbon intensity. It assumes that renewables will account for 49 % of energy production in 2030.

3.                The building envelope lever, included in category 2, is not directly affected by the machinery industry. It has a GHG reduction potential of 0.7 Gt.

4.                For the expansion of renewable energy, the IEA Sustainable Development Scenario is taken as a basis: share of renewable energy on total power generation will increase from 25 % in 2017 to 49 % in 2030 globally.

The Newsletter of last Week

Third Connected Shoppers Report by Salesforce Research

The highlights of TextileFuture’s News of last week. For your convenience just click on the feature.


Kornit Digital acquires Custom Gateway, Expanding Cloud Software Workflow Portfolio for End-to-End Management of On-Demand Apparel and Home Décor Production


Australia’s wool industry needs to market innovative products


Bankrupted Stein Mart is closing all of its stores. Here’s a map of where they are  


Bioprinting Biocompatible Hydrogels from Cellulose Inks


Cambodian workers demand protection against low wages

Catonic Yarn

Energy-efficient yarn manufacture


China regains top position as textile and apparel exports to the US rebound

Swiss Rieter wins Patent Dispute in China

China’s Recovery loses some Momentum as Retail Sales disappoint again


Suominen Corporation’s Half-Year Financial Report for January 1 – June 30, 2020: Record high net sales and operating profit in Q2

Linen Club from Aditya Birla Group unveils new brand identity and logo

Semperit with profitability boost in the first half of the year: efficiency enhancement, strict corona countermeasures and high market demand in the Medical Sector take effect

Ralph Lauren thinks people want to shop their Bitmoji


Two More Sateri Mills Confirmed EU-BAT Compliant

3D Printing

Motorised, 3D Printed Shoes could make Virtual Reality Truly Immersive


U.K. Economy Shrinks by More than Any Other Rich Country

Global Economics Intelligence executive summary, July 2020 by McKinsey

Swiss Producer and Import Price Index increased by 0.1 % in July 2020

U.S. Industrial Production rises for Third Straight Month

July increase in U.S. retail sales continues recovery from coronavirus pandemic


Intertextile Shanghai Home Textiles 2020: extensive fringe programme & online business matching platform

The Turkish Textile Sector will crown its Success at ITM 2021


Suominen increases its capacity in Europe by upgrading and restarting one of its existing production lines in Italy


BASF redefines the future of the footwear industry with its first global Footwear Innovation Center in Taiwan

Hong Kong

Hong Kong exports to the US to labelled ‘Made in China’


India, yet another textile advisory body disbanded


Proper inventory control is key to future success of fashion brands


Smart textile developers take knitwear technology to new heights


Korea: Keep supporting people and the economy until recovery fully under way, says OECD

Locust Devastation

Bayer stands by Kenya and Uganda in fight against desert locust devastation


Low-cost measurement of facemask efficacy for filtering expelled droplets during speech

XETIC for shoe comfort by PUMA

Antibacterial cellulose –  A wound dressing that kills bacteria

Evaluation of PPE for medical personnel to combat COVID -19


U.S. retail bankruptcies reach a record high

Mike Ashley’s Frasers Group delays annual results for second year in a row

Can Ralph Lauren Win Over A New Generation?

Stores of large fashion brands in New York’s Manhattan remain closed


Asia to remain the dominant sourcing base for US fashion companies: Survey

Sporting Goods

Sporting Goods Industry begins to adapt to new norms, but challenging business environment continues – July 2020 Suvery Results

Textile Innovations

Finland’s Textile InnovationsTextile Innovations


US registers 47 % increase in monthly imports of T-shirts


Circularity 20 Virtual (August 25-27, 2020)

Webinar – The Best Ways to Stop Malware and Ransomware That No One Else Will Tell You August 19, 2020)

Webinar – From R&D to Production: Introducing the INTEGRA P 450 Industrial Printer (August 18, 2020)

Worth reading

We know what you are reading this summer